Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(2): 627-636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743410

RESUMO

BACKGROUND: Recently, suspected cyhalofop-butyl-resistant populations of allohexaploid weed Echinochloa crus-galli var. crus-galli were discovered in rice fields in Aichi Prefecture, Japan. Analyzing the target-site ACCase genes of cyhalofop-butyl helps understand the resistance mechanism. However, in E. crus-galli, the presence of multiple ACCase genes and the lack of detailed gene investigations have complicated the analysis of target-site genes. Therefore, in this study, we characterized the herbicide response of E. crus-galli lines and thoroughly characterized the ACCase genes, including the evaluation of gene mutations in the ACCase genes of each line. RESULT: Four suspected resistant lines collected from Aichi Prefecture showed varying degrees of resistance to cyhalofop-butyl and other FOP-class ACCase inhibitors but were sensitive to herbicides with other modes of action. Through genomic analysis, six ACCase loci were identified in the E. crus-galli genome. We renamed each gene based on its syntenic relationship with other ACCase genes in the Poaceae species. RNA-sequencing analysis revealed that all ACCase genes, except the pseudogenized copy ACCase2A, were transcribed at a similar level in the shoots of E. crus-galli. Mutations known to confer resistance to FOP-class herbicides, that is W1999C, W2027C/S and I2041N, were found in all resistant lines in either ACCase1A, ACCase1B or ACCase2C. CONCLUSION: In this study, we found that the E. crus-galli lines were resistant exclusively to ACCase-inhibiting herbicides, with a target-site resistance mutation in the ACCase gene. Characterization of ACCase loci in E. crus-galli provides a basis for further research on ACCase herbicide resistance in Echinochloa spp. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Butanos , Echinochloa , Herbicidas , Nitrilas , Echinochloa/genética , Japão , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Mutação
2.
J Agric Food Chem ; 71(46): 17742-17751, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934576

RESUMO

Echinochloa phyllopogon, a malignant weed in Northeast China's paddy fields, is currently presenting escalating resistance concerns. Our study centered on the HJHL-715 E. phyllopogon population, which showed heightened resistance to penoxsulam, through a whole-plant bioassay. Pretreatment with a P450 inhibitor malathion significantly increased penoxsulam sensitivity in resistant plants. In order to determine the resistance mechanism of the resistant population, we purified the resistant population from individual plants and isolated target-site resistance (TSR) and nontarget-site resistance (NTSR) materials. Pro-197-Thr and Trp-574-Leu mutations in acetolactate synthase (ALS) 1 and ALS2 of the resistant population drove reduced sensitivity of penoxsulam to the target-site ALS, the primary resistance mechanisms. To fully understand the NTSR mechanism, NTSR materials were investigated by using RNA-sequencing (RNA-seq) combined with a reference genome. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis further supported the enhanced penoxsulam metabolism in NTSR materials. Gene expression data and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation confirmed 29 overexpressed genes under penoxsulam treatment, with 16 genes concurrently upregulated with quinclorac and metamifop treatment. Overall, our study confirmed coexisting TSR and NTSR mechanisms in E. phyllopogon's resistance to ALS inhibitors.


Assuntos
Acetolactato Sintase , Echinochloa , Herbicidas , Echinochloa/genética , Echinochloa/metabolismo , Resistência a Herbicidas/genética , Espectrometria de Massas em Tandem , Herbicidas/farmacologia , Herbicidas/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo
3.
Pestic Biochem Physiol ; 193: 105450, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248019

RESUMO

Echinochloa phyllopogon is a self-pollinating allotetraploid weed and a serious threat to global rice production. One sensitive and three multiple-resistant populations collected from two provinces of Northeast China were used to analyze the mechanism of multiple resistance of E. phyllopogon to penoxsulam, metamifop, and quinclorac. Compared with the sensitive population LN12, LN1 showed higher resistance to these three herbicides; LN24 showed medium resistance to penoxsulam and metamifop and higher resistance to quinclorac (274-fold); HLJ4 showed low resistance to penoxsulam and high resistance to metamifop and quinclorac. Target sequence analysis showed no mutations in acetolactate synthase or acetyl-CoA carboxylase genes. In-vitro enzyme activity analysis showed that the activity of the target enzyme of multiple herbicide-resistant populations was similar to that of the sensitive population. The P450 inhibitor, malathion, noticeably increased the sensitivity of LN1, LN24, and HLJ4 to penoxsulam, LN1 to metamifop, and HLJ4 to quinclorac. Under all four treatments, the GSTs activities of resistant and sensitive populations showed an increasing trend from day 1 to day 5, but the sensitivity and activity of GSTs were higher in the multiple-resistant population than that in the sensitive population LN12. This study identified the development of multiple-resistant E. phyllopogon populations that pose a serious threat to rice production in rice fields in Northeast China, preliminarily confirming that multiple-resistance was likely due to non-target-site resistance mechanisms. These populations of E. phyllopogon are likely to be more difficult to control.


Assuntos
Echinochloa , Herbicidas , Resistência a Herbicidas/genética , Echinochloa/genética , Ácidos Indolacéticos , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética
4.
Pest Manag Sci ; 79(8): 2725-2736, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36914944

RESUMO

BACKGROUND: Echinochloa glabrescens Munro ex Hook. f. is one of the main Echinochloa spp. seriously invading Chinese rice fields and has evolved resistance to commonly used herbicides. Previously, an E. glabrescens population (LJ-02) with suspected resistance to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicide metamifop was collected. This study aimed to determine its resistance status to metamifop and investigate the internal molecular mechanisms of resistance. RESULTS: Single-dose testing confirmed that the LJ-02 population had evolved resistance to metamifop. Gene sequencing and a relative expression assay of ACCase ruled out target-site based resistance to metamifop in LJ-02. Whole-plant bioassays revealed that, compared with the susceptible population XZ-01, LJ-02 was highly resistant to metamifop and exhibited cross-resistance to fenoxaprop-P-ethyl. Pretreatment with the known glutathione S-transferase (GST) inhibitor, 4-chloro-7-nitrobenzoxadiazole (NBD-Cl), largely reversed the resistance to metamifop by approximately 81%. Liquid chromatography-tandem mass spectrometry analysis indicated that the metabolic rates of one of the major metabolites of metamifop, N-(2-fluorophenyl)-2-hydroxy-N-methylpropionamide (HPFMA), were up to 383-fold faster in LJ-02 plants than in XZ-01 plants. There were higher basal and metamifop-inducible GST activities toward 1-chloro-2,4-dinitrobenzene (CDNB) in LJ-02 than in XZ-01. Six GST genes were metamifop-induced and overexpressed in the resistant LJ-02 population. CONCLUSION: This study reports, for the first time, the occurrence of metabolic metamifop resistance in E. glabrescens worldwide. The high-level metamifop resistance in the LJ-02 population may mainly involve specific isoforms of GSTs that endow high catalytic activity and strong substrate specificity. © 2023 Society of Chemical Industry.


Assuntos
Echinochloa , Herbicidas , Echinochloa/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Glutationa , Transferases
5.
Plant Signal Behav ; 18(1): 2172517, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36722712

RESUMO

Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is the most difficult-to-control weed species of rice production systems worldwide. It has evolved resistance to different herbicide sites of action, including the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. Target-site mutations conferring resistance to ACCase-inhibiting herbicides are well documented; however, the role of the different ACCase genes in conferring resistance to cyhalofop-p-butyl (cyhalofop), an ACCase-inhibiting herbicide, remains poorly understood. This research assessed the contribution of gene amplification and expression of ACCase genes in a cyhalofop-resistant barnyardgrass accession. Additionally, the expression of glutathione-S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) genes as possible contributors to resistance to cyhalofop were investigated. Results demonstrated that ACCase gene amplification does not contribute to cyhalofop resistance. However, ACCase1 and ACCase3 were found to be overexpressed in the cyhalofop-resistant barnyardgrass accession. At 24 h after cyhalofop treatment, an overexpression of 2.0- and 2.8-fold was detected in ACCase1 and ACCase3, respectively. In addition, CYP81A21 (a P450 gene) was found to be 2.5-fold overexpressed compared to the susceptible accession in the same time period. These results suggest that ACCase1, ACCase3, and CYP81A21 are crucial genes in contributing cyhalofop resistance in this barnyardgrass accession.


Assuntos
Echinochloa , Herbicidas , Acetil-CoA Carboxilase/genética , Echinochloa/genética , Arkansas , Herbicidas/farmacologia
6.
Pest Manag Sci ; 79(1): 163-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36111449

RESUMO

BACKGROUND: Echinochloa crus-galli var. zelayensis is a troublesome weed in rice fields and can be controlled by using quinclorac. However, over-reliance on quinclorac has resulted in resistant (R) barnyardgrass, which differs significantly in its ability to transport quinclorac compared to susceptible (S) barnyardgrass. This study aimed to investigate the underlying mechanisms for this different translocation between R and S barnyardgrass. RESULTS: Larger amount of quinclorac was transferred from shoots to roots in R compared to S barnyardgrass. After 1 day of quinclorac [300 g active ingredient (a.i.) ha-1 ] foliar treatment, its content in shoots of R was 81.92% of that in S barnyardgrass; correspondingly, in roots of R was 1.17 fold of that in S barnyardgrass. RNA-sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the expression levels of PIPs belonging to aquaporins (AQPs) in R were higher than in S barnyardgrass, with or without quinclorac treatment. With co-application of quinclorac and AQPs inhibitors [mercury(II) chloride (HgCl2 )] treatment, even though the expression levels of PIPs and the transport rates of quinclorac were both suppressed in R and S barnyardgrass, this process was less pronounced in R than in S barnyardgrass. CONCLUSION: This report provides clear evidence that higher PIPs expression results in rapid quinclorac translocation from shoots to roots and reduces the quinclorac accumulation in the shoot meristems in R barnyardgrass, thus reducing the control efficacy of quinclorac. © 2022 Society of Chemical Industry.


Assuntos
Echinochloa , Echinochloa/genética
7.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430336

RESUMO

Echinochloa crus-galli var. crus-galli, E. crus-galli var. zelayensis, and E. glabrescens, morphologically similar at the seedling stage, are the most pernicious barnyard grass species in paddy fields worldwide. Chloroplast (cp) genomes could be conducive to their identification. In this study, we assembled the complete cp genome sequences of Echinochloa crus-galli var. crus-galli (139,856 bp), E. crus-galli var. zelayensis (139,874 bp), and E. glabrescens (139,874 bp), which exhibited a typical circular tetramerous structure, large and small single-copy regions, and a pair of inverted repeats. In Echinochloa crus-galli var. crus-galli, there were 136 simple sequence (SSRs) and 62 long (LRs) repeats, and in the other two species, 139 SSRs and 68 LRs. Each cp genome contains 92 protein-encoding genes. In Echinochloa crus-galli var. crus-galli and E. glabrescens, 321 and 1 single-nucleotide polymorphisms were detected compared to Echinochloa crus-galli var. zelayensis. IR expansion and contraction revealed small differences between the three species. The phylogenetic tree based on cp genomes demonstrated the phylogenetic relationship between ten barnyard grass species and other common Gramineae plants, showing new genetic relationships of the genus Echinochloa. This study provides valuable information on cp genomes, useful for identifying and classifying the genus Echinochloa and studying its phylogenetic relationships and evolution.


Assuntos
Echinochloa , Genoma de Cloroplastos , Echinochloa/genética , Filogenia
8.
J Exp Bot ; 73(19): 6916-6930, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35867472

RESUMO

The resistance of weeds to herbicides poses a major threat to agricultural production, and non-target-site resistance (NTSR) is often a serious problem as its mechanisms can in some cases confer resistance to herbicides with different modes of action. In this study, we hypothesized that bZIP transcription factors (TFs), which regulate abiotic stress responses in many plants, play a regulatory role in NTSR. Whole-plant assays indicated that the wild grasses Echinochloa crus-galli and E. glabrescens are resistant to the herbicides penoxsulam, cyhalofop-butyl, and quintrione. Transcriptome sequencing then identified 101 and 49 bZIP TFs with differential expression following penoxsulam treatment in E. crus-galli and E. glabrescens, respectively. Twelve of these genes had >60% homology with rice genes. The expression of bZIP88 was considerably up-regulated 6 h after treatment with the three different herbicides, and it was similar between resistant and susceptible populations; however, the relative expression levels before herbicide treatment and 24 h after were the same. We used rice (Oryza sativa ssp. japonica cv Nipponbare) as a model system for functional validation and found that CRISPR-Cas9-knockout of the rice bZIP88 ortholog increased the sensitivity to herbicide, whereas overexpression reduced it. The OsbZIP88 protein was localized to the nucleus. Using ChIP coupled with high-throughput sequencing, OsbZIP88 was found to form a network regulatory center with other TFs such as bZIP20/52/59 to regulate OsKS1, OsCOE1, and OsIM1, which are related to auxin, abscisic acid, brassinosteroids, and gibberellic acid. Based on these results, we have established a database of bZIP TFs corresponding to herbicide stress, and resolved the mechanisms of the positive regulation of herbicide resistance by bZIP88, thereby providing new insights for NTSR.


Assuntos
Echinochloa , Herbicidas , Oryza , Echinochloa/genética , Echinochloa/metabolismo , Herbicidas/farmacologia , Fatores de Transcrição/metabolismo , Regulação para Cima , Resistência a Herbicidas/genética , Oryza/genética , Oryza/metabolismo
9.
Plant J ; 111(5): 1354-1367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781905

RESUMO

Momilactone A, an important plant labdane-related diterpenoid, functions as a phytoalexin against pathogens and an allelochemical against neighboring plants. The genes involved in the biosynthesis of momilactone A are found in clusters, i.e., momilactone A biosynthetic gene clusters (MABGCs), in the rice and barnyardgrass genomes. In addition, we know little about the origin and evolution of MABGCs. Here, we integrated results from comprehensive phylogeny and comparative genomic analyses of the core genes of MABGC-like clusters and MABGCs in 40 monocot plant genomes, providing convincing evidence for the birth and evolution of MABGCs in grass species. The MABGCs found in the PACMAD clade of the core grass lineage (including Panicoideae and Chloridoideae) originated from a MABGC-like cluster in Triticeae (BOP clade) via lateral gene transfer (LGT) and followed by recruitment of MAS1/2 and CYP76L1 genes. The MABGCs in Oryzoideae originated from PACMAD through another LGT event and lost CYP76L1 afterwards. The Oryza MABGC and another Oryza diterpenoid cluster c2BGC are two distinct clusters, with the latter originating from gene duplication and relocation within Oryzoideae. Further comparison of the expression patterns of the MABGC genes between rice and barnyardgrass in response to pathogen infection and allelopathy provides novel insights into the functional innovation of MABGCs in plants. Our results demonstrate LGT-mediated origination of MABGCs in grass and shed lights into the evolutionary innovation and optimization of plant biosynthetic pathways.


Assuntos
Diterpenos , Echinochloa , Oryza , Diterpenos/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Família Multigênica , Oryza/metabolismo , Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
10.
J Hazard Mater ; 436: 129191, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739721

RESUMO

Glyphosate is a dominant organophosphate herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimate pathway. Glyphosate is extensively applied since manufactured, which has led to the emergence of various glyphosate-resistant crops and weeds. However, the molecular mechanism of many glyphosate-resistance machineries remains unclear. Recently, the upregulated expression of two homologous aldo-keto reductases (AKRs), designated as AKR4C16 and AKR4C17, were found to contribute to the glyphosate resistance in Echinochloa colona. This represents the first naturally evolved glyphosate-degrading machinery reported in plants. Here, we report the three-dimensional structure of these two AKR enzymes in complex with cofactor by performing X-ray crystallography. Furthermore, the binding-mode of glyphosate were elucidated in a ternary complex of AKR4C17. Based on the structural information and the previous study, we proposed a possible mechanism of action of AKR-mediated glyphosate degradation. In addition, a variant F291D of AKR4C17 that was constructed based on structure-based engineering showed a 70% increase in glyphosate degradation. In conclusion, these results demonstrate the structural features and glyphosate-binding mode of AKR4C17, which increases our understanding of the enzymatic mechanism of glyphosate bio-degradation and provides an important basis for the designation of AKR-based glyphosate-resistance for further applications.


Assuntos
Echinochloa , Herbicidas , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Glicina/análogos & derivados , Glicina/química , Resistência a Herbicidas/genética , Herbicidas/farmacologia
11.
Pest Manag Sci ; 78(10): 4207-4216, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35705850

RESUMO

BACKGROUND: CYP81A cytochrome P450s (CYP81As) play a key role in herbicide detoxification in Poaceae plants. Crop CYP81As confer natural tolerance to multiple herbicides, whereas CYP81As in weeds disrupt herbicide action. Identifying differences in CYP81A herbicide specificity between crops and weeds could provide valuable information for controlling weeds. In this study, we quantitatively compared herbicide specificity between CYP81A6 from rice (Oryza sativa) and CYP81A12 and CYP81A21 from a weed, Echinochloa phyllopogon, using transgenic Escherichia coli and Arabidopsis. RESULTS: All three CYP81As metabolized the five tested herbicides and formed similar metabolites, with the highest relative activities of 400 to 580% toward bentazone compared to their activity on bensulfuron-methyl (defined as 100%). However, they showed differing activity toward propyrisulfuron. The relative activities of Echinochloa phyllopogon CYP81A12 (12.2%) and CYP81A21 (34.4%) toward propyrisulfuron were lower than that of rice CYP81A6 (98.5%). Additionally, rice CYP81A6 produced O-demethylated propyrisulfuron and hydroxylated products, whereas Echinochloa phyllopogon CYP81As produced only hydroxylated products. Arabidopsis expressing CYP81A12 and CYP81A21 exhibited lower levels of resistance against propyrisulfuron compared to that in Arabidopsis expressing CYP81A6. Homology modeling and in silico docking revealed that bensulfuron-methyl docked well into the active centers of all three CYP81As, whereas propyrisulfuron docked into rice CYP81A6 but not into Echinochloa phyllopogon CYP81As. CONCLUSION: The differing herbicide specificity displayed by rice CYP81A6 and Echinochloa phyllopogon CYP81A12 and CYP81A21 will help design inhibitors (synergists) of weed CYP81As, as well as develop novel herbicide ingredients that are selectively metabolized by crop CYP81As, to overcome the problem of herbicide resistance. © 2022 Society of Chemical Industry.


Assuntos
Arabidopsis , Echinochloa , Herbicidas , Oryza , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Echinochloa/genética , Resistência a Herbicidas , Herbicidas/metabolismo , Herbicidas/farmacologia , Oryza/metabolismo , Plantas Daninhas/metabolismo
12.
Genes (Basel) ; 13(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328069

RESUMO

Echinochloa colona and other species in this genus are a threat to global rice production and food security. Quinclorac, an auxin mimic, is a common herbicide for grass weed control in rice, and Echinochloa spp. have evolved resistance to it. The complete mode of quinclorac action and subsequent evolution of resistance is not fully understood. We analyzed the de novo transcriptome of multiple-herbicide-resistant (ECO-R) and herbicide-susceptible genotypes in response to quinclorac. Several biological processes were constitutively upregulated in ECO-R, including carbon metabolism, photosynthesis, and ureide metabolism, indicating improved metabolic efficiency. The transcriptional change in ECO-R following quinclorac treatment indicates an efficient response, with upregulation of trehalose biosynthesis, which is also known for abiotic stress mitigation. Detoxification-related genes were induced in ECO-R, mainly the UDP-glycosyltransferase (UGT) family, most likely enhancing quinclorac metabolism. The transcriptome data also revealed that many antioxidant defense elements were uniquely elevated in ECO-R to protect against the auxin-mediated oxidative stress. We propose that upon quinclorac treatment, ECO-R detoxifies quinclorac utilizing UGT genes, which modify quinclorac using the sufficient supply of UDP-glucose from the elevated trehalose pathway. Thus, we present the first report of upregulation of trehalose synthesis and its association with the herbicide detoxification pathway as an adaptive mechanism to herbicide stress in Echinochloa, resulting in high resistance.


Assuntos
Echinochloa , Herbicidas , Oryza , Echinochloa/genética , Echinochloa/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacologia , Ácidos Indolacéticos/metabolismo , Oryza/genética , Quinolinas , Transcriptoma , Trealose/metabolismo , Difosfato de Uridina/metabolismo , Xenobióticos/metabolismo
13.
Pest Manag Sci ; 78(6): 2560-2570, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334143

RESUMO

BACKGROUND: Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv) has evolved resistance to the acetolactate synthase (ALS) inhibitor penoxsulam which is used to control weeds in rice fields in China. The present study is conducted to identify the target-site resistance (TSR) mechanisms conferring resistance in a penoxsulam-resistant population. RESULTS: The ALS sensitivity in vitro of the resistant population was sixfold lower to penoxsulam than that of the sensitive population. ALS sequencing revealed that no known mutation conferring ALS herbicide resistance was detected. However, a novel mutation Phe-206-Leu was identified in the ALS gene. Additionally, ALS gene expression level of the resistant population was lower than that of the sensitive population. Therefore, the penoxsulam resistance was not due to the overexpression of ALS gene. Molecular docking revealed that this mutation may change the interaction of the penoxsulam-ALS binding and weaken its mutual affinity by approximately 10%. Arabidopsis thaliana transformed with mutant ALS had fourfold greater resistance to penoxsulam and varied cross-resistance to other ALS herbicides than those transformed with sensitive ALS. Mutant and sensitive ALS proteins expressed by the baculovirus system exhibited different in vitro penoxsulam sensitivity levels. Mutant ALS had eightfold lower sensitivity to penoxsulam than sensitive ALS. CONCLUSION: This report provides clear evidence that the ALS mutation at position 206 (Phe-206-Leu) confers penoxsulam resistance in barnyardgrass. Phe-206 was confirmed to be the ninth amino acid residue related to ALS herbicide resistance in weeds. © 2022 Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Echinochloa , Herbicidas , Echinochloa/genética , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Mutação , Proteínas de Plantas/metabolismo , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Sulfonamidas , Uridina/análogos & derivados
14.
Nat Commun ; 13(1): 689, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115514

RESUMO

As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.


Assuntos
Produtos Agrícolas/genética , Echinochloa/genética , Evolução Molecular , Genoma de Planta/genética , Genômica/métodos , Plantas Daninhas/genética , Adaptação Fisiológica/genética , Produtos Agrícolas/classificação , Domesticação , Echinochloa/classificação , Fluxo Gênico , Genes de Plantas/genética , Especiação Genética , Geografia , Resistência a Herbicidas/genética , Filogenia , Plantas Daninhas/classificação , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
15.
J Hazard Mater ; 428: 128225, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032953

RESUMO

Long-term and excessive herbicide use has led to some environmental concerns and especially, herbicide resistance evolution in weeds. Here, we confirmed acetolactate synthase (ALS) inhibiting herbicide penoxsulam resistance and cross resistance to acetyl-coenzyme carboxylase (ACCase) inhibiting herbicides (cyhalofop-butyl and metamifop) in a global weed Echinochloa crus-galli population resistant to these herbicides (R). Penoxsulam metabolism study indicated that degradation rate was significantly higher in R than susceptible E. crus-galli population (S). RNA-sequencing revealed that a cytochrome P450 (P450) gene, CYP81A68, expressed higher in R versus S. Rice seedlings overexpressing this CYP81A68 gene are resistant to penoxsulam, cyhalofop-butyl and metamifop, and penoxsulam resistance is due to enhanced metabolism via O-demethylation. Deletion analysis of the CYP81A68 gene promoter identified an efficient region, in which differential methylation of CpG islands occurred between R and S. Collectively, these results demonstrate that upregulation of E. crus-galli CYP81A68 gene endows generalist metabolic resistance to commonly used ALS- and ACCase-inhibiting herbicides in rice fields and epigenetic regulation may play a role in the resistance evolution. This research could contribute to strategies reducing herbicide environmental impacts by judicious selection of alternative herbicide and non-chemical control tactics.


Assuntos
Acetolactato Sintase , Echinochloa , Herbicidas , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Echinochloa/genética , Echinochloa/metabolismo , Epigênese Genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Proteínas de Plantas/genética
16.
Pestic Biochem Physiol ; 180: 104999, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34955183

RESUMO

Dose-response experiments were conducted to assess the sensitivity of one susceptible and three putative resistant (R1, R2, and R3) barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] biotypes to florpyrauxifen-benzyl and cyhalofop-butyl alone and as a formulated premix. Subsequently, potential resistance mechanisms of the barnyardgrass were evaluated. Based on biomass reduction results, resistant/susceptible ratios were calculated for R1 (7.0-50), R2 (7.0-150), and R3 (18-214) biotypes. Absorption and translocation of [14C]-florpyrauxifen-benzyl decreased in R1 and R3 biotypes, but not for [14C]-cyhalofop-butyl. The metabolism of [14C]-florpyrauxifen-benzyl to [14C]-florpyrauxifen-acid was >2-fold less in resistant biotypes (9-11%) than in the susceptible biotype (23%). Moreover, the production of [14C]-florpyrauxifen-acid in susceptible barnyardgrass (not in the R biotypes) increased 3-fold when florpyrauxifen-benzyl and cyhalofop-butyl were applied in mixture compared to florpyrauxifen-benzyl applied alone. The tested barnyardgrass biotypes had no mutation in the Transport Inhibitor Response1, auxin-signaling F-box, and acetyl coenzyme A carboxylase genes. Although further studies on cyhalofop-butyl resistance with respect to analysis of specific metabolites are needed, our findings in this study demonstrates that the evolution of florpyrauxifen-benzyl resistance in multiple resistant barnyardgrass can be related to non-target-site resistance mechanisms reducing absorption and translocation of the herbicide and causing reduced conversion or rapid degradation of florpyrauxifen-acid.


Assuntos
Echinochloa , Herbicidas , Butanos , Echinochloa/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Nitrilas/farmacologia
17.
Pest Manag Sci ; 78(1): 287-295, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34482604

RESUMO

BACKGROUND: Florpyrauxifen-benzyl (FPB) is an arylpicolinate herbicide (Group IV) for barnyardgrass control in rice. One susceptible (Sus) and three putative FPB-resistant (R1, R2, and R3) barnyardgrass biotypes were selected based on resistant/susceptible (R/S) ratios obtained from dose-response tests and used to investigate the potential resistance mechanisms. RESULTS: Based on visual control results, the R/S ratios of barnyardgrass biotypes R1, R2, and R3 were 60-, 33-, and 16-fold greater than the Sus standard, respectively. Sequencing results of TIR1 and AFB genes in the tested barnyardgrass revealed no difference between Sus and R barnyardgrass biotypes. Absorption of [14 C]-FPB in Sus barnyardgrass increased over time and reached 90%, which was >10 percentage points greater than that in R biotypes. The [14 C]-FPB absorption in all R barnyardgrass equilibrated after 48 h. For both Sus and R barnyardgrass, most [14 C]-FPB absorbed was present in the treated leaf (79.8-88.8%), followed by untreated aboveground (9.5-18.6%) and belowground tissues (1.3-2.2%). No differences in translocation were observed. Differences between Sus and R barnyardgrass biotypes were found for FPB metabolism. Production of the active metabolite, florpyrauxifen-acid, was greater in Sus barnyardgrass (21.5-52.1%) than in R barnyardgrass (5.5-34.9%). CONCLUSION: In conclusion, reductions in FPB absorption and florpyrauxifen-acid production may contribute to the inability to control barnyardgrass with FPB. © 2021 Society of Chemical Industry.


Assuntos
Echinochloa , Herbicidas , Oryza , Echinochloa/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Folhas de Planta
18.
Genes (Basel) ; 12(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34828447

RESUMO

The sustainability of rice cropping systems is jeopardized by the large number and variety of populations of polyploid Echinochloa spp. resistant to ALS inhibitors. Better knowledge of the Echinochloa species present in Italian rice fields and the study of ALS genes involved in target-site resistance could significantly contribute to a better understanding of resistance evolution and management. Using a CAPS-rbcL molecular marker, two species, E. crus-galli (L.) P. Beauv. and E. oryzicola (Vasinger) Vasing., were identified as the most common species in rice in Italy. Mutations involved in ALS inhibitor resistance in the different species were identified and associated with the ALS homoeologs. The relative expression of the ALS gene copies was evaluated. Molecular characterization led to the identification of three ALS genes in E. crus-galli and two in E. oryzicola. The two species also carried different point mutations conferring resistance: Ala122Asn in E. crus-galli and Trp574Leu in E. oryzicola. Mutations were carried in the same gene copy (ALS1), which was significantly more expressed than the other copies (ALS2 and ALS3) in both species. These results explain the high resistance level of these populations and why mutations in the other ALS copies are not involved in herbicide resistance.


Assuntos
Acetolactato Sintase/genética , Echinochloa/genética , Mutação , Proteínas de Plantas/genética , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Sítios de Ligação , Resistência a Medicamentos , Echinochloa/classificação , Echinochloa/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Dosagem de Genes , Proteínas de Plantas/metabolismo , Ligação Proteica
19.
Plant Sci ; 313: 111097, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763850

RESUMO

Safeners are chemical compounds used to improve selectivity and safety of herbicides in crops by activating genes that enhance herbicide metabolic detoxification. The genes activated by safeners in crops are similar to the genes causing herbicide resistance through increased metabolism in weeds. This work investigated the effect of the safener isoxadifen-ethyl (IS) in combination with fenoxaprop-p-ethyl (FE) on the evolution of herbicide resistance in Echinochloa crus-galli under recurrent selection. Reduced susceptibility was observed in the progeny after recurrent selection with both FE alone and with FE + IS for two generations (G2) compared to the parental population (G0). The resistance index found in G2 after FE + IS selection was similar as when FE was used alone, demonstrating that the safener did not increase the rate or magnitude of herbicide resistance evolution. G2 progeny selected with FE alone and the combination of FE + IS had increased survival to herbicides from other mechanisms of action relative to the parental G0 population. One biotype of G2 progeny had increased constitutive expression of glutathione-S-transferase (GST1) after recurrent selection with FE + IS. G2 progeny had increased expression of two P450 genes (CYP71AK2 and CYP72A122) following treatment with FE, while G2 progeny had increased expression of five P450 genes (CYP71AK2, CYP72A258, CYP81A12, CYP81A14 and CYP81A21) after treatment with FE + IS. Repeated selection with low doses of FE with or without the safener IS decreased E. crus-galli control and showed potential for cross-resistance evolution. Addition of safener did not further decrease herbicide sensitivity in second generation progeny; however, the recurrent use of safener in combination with FE resulted in safener-induced increased expression of several CYP genes. This is the first report using safener as an additional factor to study herbicide resistance evolution in weeds under experimental recurrent selection.


Assuntos
Echinochloa/genética , Echinochloa/fisiologia , Resistência a Herbicidas/genética , Resistência a Herbicidas/fisiologia , Herbicidas/metabolismo , Oxazóis/metabolismo , Propionatos/metabolismo , Brasil , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Controle de Plantas Daninhas
20.
Pestic Biochem Physiol ; 178: 104918, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446194

RESUMO

Herbicide resistance is frequently reported in E. crus-galli globally with target and non-target site resistance mechanism to acetolactate synthase (ALS)-inhibiting herbicides. However, resistance to certain herbicides can result in increased sensitivity to other herbicides, a phenomenon called negative cross-resistance. The objective of this study is to identify the occurrence of negative cross-resistance (NCR) to the pro-herbicide clomazone in populations of E. crus-galli resistant to ALS inhibitors due to increased metabolization. Clomazone dose-response curves, with and without malathion, were performed in imazethapyr-resistant and -susceptible E. crus-galli biotypes. CYPs genes expression and antioxidant enzymes activity were also evaluated. The effective dose to reduce 50% (ED50) of dry shoot weight obtained in the clomazone dose-response curves of the metabolic based imazethapyr-resistant and -susceptible biotypes groups were 22.712 and 58.745 g ha-1, respectively, resulting in a resistance factor (RF) of 0.37, indicating the occurrence of NCR. The application of malathion prior to clomazone increased the resistance factor from 0.60 to 1.05, which indicate the reversion of the NCR. Some CYP genes evaluated were expressed in a higher level, ranging from 2.6-9.1 times according to the biotype and the gene, in the imazethapyr-resistant than in -susceptible biotypes following clomazone application. Antioxidant enzyme activity was not associated with NCR. This study is the first report of NCR directly related to the mechanism of resistance increased metabolization in plants. The occurrence of NCR to clomazone in E. crus-galli can help delay the evolution of herbicide resistance.


Assuntos
Acetolactato Sintase , Echinochloa , Herbicidas , Ácidos Nicotínicos , Acetolactato Sintase/genética , Echinochloa/genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Isoxazóis , Ácidos Nicotínicos/toxicidade , Oxazolidinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...